Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
PLoS Pathog ; 17(2): e1009308, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534855

RESUMO

Aerosol exposure to eastern equine encephalitis virus (EEEV) can trigger a lethal viral encephalitis in cynomolgus macaques which resembles severe human disease. Biomarkers indicative of central nervous system (CNS) infection by the virus and lethal outcome of disease would be useful in evaluating potential medical countermeasures, especially for therapeutic compounds. To meet requirements of the Animal Rule, a better understanding of the pathophysiology of EEEV-mediated disease in cynomolgus macaques is needed. In this study, macaques given a lethal dose of clone-derived EEEV strain V105 developed a fever between 2-3 days post infection (dpi) and succumbed to the disease by 6 dpi. At the peak of the febrile phase, there was a significant increase in the delta electroencephalography (EEG) power band associated with deep sleep as well as a sharp rise in intracranial pressure (ICP). Viremia peaked early after infection and was largely absent by the onset of fever. Granulocytosis and elevated plasma levels of IP-10 were found early after infection. At necropsy, there was a one hundred- to one thousand-fold increase in expression of traumatic brain injury genes (LIF, MMP-9) as well as inflammatory cytokines and chemokines (IFN-γ, IP-10, MCP-1, IL-8, IL-6) in the brain tissues. Phenotypic analysis of leukocytes entering the brain identified cells as primarily lymphoid (T, B, NK cells) with lower levels of infiltrating macrophages and activated microglia. Massive amounts of infectious virus were found in the brains of lethally-infected macaques. While no infectious virus was found in surviving macaques, quantitative PCR did find evidence of viral genomes in the brains of several survivors. These data are consistent with an overwhelming viral infection in the CNS coupled with a tremendous inflammatory response to the infection that may contribute to the disease outcome. Physiological monitoring of EEG and ICP represent novel methods for assessing efficacy of vaccines or therapeutics in the cynomolgus macaque model of EEEV encephalitis.


Assuntos
Aerossóis/efeitos adversos , Biomarcadores/análise , Encéfalo/imunologia , Encéfalo/patologia , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalite Viral/imunologia , Febre/imunologia , Animais , Encéfalo/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite Viral/patologia , Encefalite Viral/virologia , Feminino , Febre/patologia , Febre/virologia , Macaca fascicularis , Masculino
2.
Antiviral Res ; 182: 104875, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32755661

RESUMO

Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV) are mosquito-borne viruses in the Americas that cause central nervous system (CNS) disease in humans and equids. In this study, we directly characterized the pathogenesis of VEEV, EEEV, and WEEV in cynomolgus macaques following subcutaneous exposure because this route more closely mimics natural infection via mosquito transmission or by an accidental needle stick. Our results highlight how EEEV is significantly more pathogenic compared to VEEV similarly to what is observed in humans. Interestingly, EEEV appears to be just as neuropathogenic by subcutaneous exposure as it was in previously completed aerosol exposure studies. In contrast, subcutaneous exposure of cynomolgus macaques with WEEV caused limited disease and is contradictory to what has been reported for aerosol exposure. Several differences in viremia, hematology, or tissue tropism were noted when animals were exposed subcutaneously compared to prior aerosol exposure studies. This study provides a more complete picture of the pathogenesis of the encephalitic alphaviruses and highlights how further defining the neuropathology of these viruses could have important implications for the development of medical countermeasures for the neurovirulent alphaviruses.


Assuntos
Vírus da Encefalite Equina do Leste/patogenicidade , Vírus da Encefalite Equina Venezuelana/patogenicidade , Vírus da Encefalite Equina do Oeste/patogenicidade , Encefalomielite Equina/patologia , Encefalomielite Equina Venezuelana/patologia , Macaca fascicularis/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Feminino , Masculino , Replicação Viral
3.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32581106

RESUMO

Eastern equine encephalitis virus (EEEV) is the most pathogenic member of the Alphavirus genus in the Togaviridae family. This virus continues to circulate in the New World and has a potential for deliberate use as a bioweapon. Despite the public health threat, to date no attenuated EEEV variants have been applied as live EEEV vaccines. Our previous studies demonstrated the critical function of the hypervariable domain (HVD) in EEEV nsP3 for the assembly of viral replication complexes (vRCs). EEEV HVD contains short linear motifs that recruit host proteins required for vRC formation and function. In this study, we developed a set of EEEV mutants that contained combinations of deletions in nsP3 HVD and clustered mutations in capsid protein, and tested the effects of these modifications on EEEV infection in vivo These mutations had cumulative negative effects on viral ability to induce meningoencephalitis. The deletions of two critical motifs, which interact with the members of cellular FXR and G3BP protein families, made EEEV cease to be neurovirulent. The additional clustered mutations in capsid protein, which affect its ability to induce transcriptional shutoff, diminished EEEV's ability to develop viremia. Most notably, despite the inability to induce detectable disease, the designed EEEV mutants remained highly immunogenic and, after a single dose, protected mice against subsequent infection with wild-type (wt) EEEV. Thus, alterations of interactions of EEEV HVD and likely HVDs of other alphaviruses with host factors represent an important direction for development of highly attenuated viruses that can be applied as live vaccines.IMPORTANCE Hypervariable domains (HVDs) of alphavirus nsP3 proteins recruit host proteins into viral replication complexes. The sets of HVD-binding host factors are specific for each alphavirus, and we have previously identified those specific for EEEV. The results of this study demonstrate that the deletions of the binding sites of the G3BP and FXR protein families in the nsP3 HVD of EEEV make the virus avirulent for mice. Mutations in the nuclear localization signal in EEEV capsid protein have an additional negative effect on viral replication in vivo Despite the inability to cause a detectable disease, the double HVD and triple HVD/capsid mutants induce high levels of neutralizing antibodies. Single immunization protects mice against infection with the highly pathogenic North American strain of EEEV. High safety, the inability to revert to wild-type phenotype, and high immunogenicity make the designed mutants attractive vaccine candidates for EEEV infection.


Assuntos
Vírus da Encefalite Equina do Leste/imunologia , Vacinas Atenuadas/imunologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/imunologia , Fatores de Virulência/imunologia , Animais , Anticorpos Neutralizantes , Sítios de Ligação , Proteínas do Capsídeo/genética , Linhagem Celular , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina/imunologia , Encefalomielite Equina/prevenção & controle , Camundongos , Mutação , Proteínas não Estruturais Virais/genética , Virulência/genética , Virulência/imunologia , Fatores de Virulência/genética , Replicação Viral
4.
PLoS Pathog ; 15(10): e1007867, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658290

RESUMO

Eastern equine encephalitis virus (EEEV), a mosquito-borne RNA virus, is one of the most acutely virulent viruses endemic to the Americas, causing between 30% and 70% mortality in symptomatic human cases. A major factor in the virulence of EEEV is the presence of four binding sites for the hematopoietic cell-specific microRNA, miR-142-3p, in the 3' untranslated region (3' UTR) of the virus. Three of the sites are "canonical" with all 7 seed sequence residues complimentary to miR-142-3p while one is "non-canonical" and has a seed sequence mismatch. Interaction of the EEEV genome with miR-142-3p limits virus replication in myeloid cells and suppresses the systemic innate immune response, greatly exacerbating EEEV neurovirulence. The presence of the miRNA binding sequences is also required for efficient EEEV replication in mosquitoes and, therefore, essential for transmission of the virus. In the current studies, we have examined the role of each binding site by point mutagenesis of the seed sequences in all combinations of sites followed by infection of mammalian myeloid cells, mosquito cells and mice. The resulting data indicate that both canonical and non-canonical sites contribute to cell infection and animal virulence, however, surprisingly, all sites are rapidly deleted from EEEV genomes shortly after infection of myeloid cells or mice. Finally, we show that the virulence of a related encephalitis virus, western equine encephalitis virus, is also dependent upon miR-142-3p binding sites.


Assuntos
Regiões 3' não Traduzidas/genética , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Oeste/genética , MicroRNAs/genética , Replicação Viral/genética , Aedes , Animais , Sítios de Ligação/genética , Linhagem Celular , Cricetinae , Vírus da Encefalite Equina do Leste/imunologia , Vírus da Encefalite Equina do Leste/patogenicidade , Vírus da Encefalite Equina do Oeste/imunologia , Vírus da Encefalite Equina do Oeste/patogenicidade , Encefalomielite Equina/imunologia , Encefalomielite Equina/virologia , Feminino , Imunidade Inata/imunologia , Células L , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Virulência/genética
5.
Microb Pathog ; 132: 80-86, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31029717

RESUMO

Madariaga Virus (MADV) is an emergent Alphavirus of the eastern equine encephalitis virus (EEEV) strain complex causing epizootic epidemics. In this study the genetic diversity and the transmission dynamics of Madariaga virus has been investigated by Bayesian phylogenetics and phylodynamic analysis. A database of 32 sequences of MADV group structural polyprotein were downloaded from GenBank, aligned manually edited by Bioedit Software. ModelTest v. 3.7 was used to select the simplest evolutionary model that adequately fitted the sequence data. Neighbor-joining tree was generated using MEGA7. The phylogenetic signal of the dataset was tested by the likelihood mapping analysis. The Bayesian phylogenetic tree was built using BEAST. Selective pressure analysis revealed one positive selection site. The phylogenetic trees showed two main clusters. In particular, Lineage II showed an epizootic infection in monkeys and Lineage III, including 2 main clusters (IIIa and IIIB), revealing an epizootic infection in humans in Haiti and an epizootic infection in humans in Venezuela during the 2016, respectively. The Bayesian maximum clade credibility tree and the time of the most common recent ancestor estimates, showed that the root of the tree dated back to the year 346 with the probable origin in Brazil. Gene flow analysis revealed viral exchanges between different neighbor countries of South America. In conclusion, Bayesian phylogenetic and phylodynamic represent useful tools to follow the transmission dynamic of emergent pathogens to prevent new epidemics spreading worldwide.


Assuntos
Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina/epidemiologia , Encefalomielite Equina/transmissão , Encefalomielite Equina/virologia , Filogenia , Infecções por Alphavirus , Animais , Sequência de Bases , Teorema de Bayes , Brasil , Vírus da Encefalite Equina do Leste/classificação , Epidemias , Evolução Molecular , Fluxo Gênico , Variação Genética , Haiti , Haplorrinos , Humanos , RNA Viral/genética , Alinhamento de Sequência , América do Sul , Venezuela
6.
PLoS Pathog ; 15(2): e1007584, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742691

RESUMO

Live attenuated vaccines (LAVs), if sufficiently safe, provide the most potent and durable anti-pathogen responses in vaccinees with single immunizations commonly yielding lifelong immunity. Historically, viral LAVs were derived by blind passage of virulent strains in cultured cells resulting in adaptation to culture and a loss of fitness and disease-causing potential in vivo. Mutations associated with these phenomena have been identified but rarely have specific attenuation mechanisms been ascribed, thereby limiting understanding of the attenuating characteristics of the LAV strain and applicability of the attenuation mechanism to other vaccines. Furthermore, the attenuated phenotype is often associated with single nucleotide changes in the viral genome, which can easily revert to the virulent sequence during replication in animals. Here, we have used a rational approach to attenuation of eastern equine encephalitis virus (EEEV), a mosquito-transmitted alphavirus that is among the most acutely human-virulent viruses endemic to North America and has potential for use as an aerosolized bioweapon. Currently, there is no licensed antiviral therapy or vaccine for this virus. Four virulence loci in the EEEV genome were identified and were mutated individually and in combination to abrogate virulence and to resist reversion. The resultant viruses were tested for virulence in mice to examine the degree of attenuation and efficacy was tested by subcutaneous or aerosol challenge with wild type EEEV. Importantly, all viruses containing three or more mutations were avirulent after intracerebral infection of mice, indicating a very high degree of attenuation. All vaccines protected from subcutaneous EEEV challenge while a single vaccine with three mutations provided reproducible, near-complete protection against aerosol challenge. These results suggest that informed mutation of virulence determinants is a productive strategy for production of LAVs even with highly virulent viruses such as EEEV. Furthermore, these results can be directly applied to mutation of analogous virulence loci to create LAVs from other viruses.


Assuntos
Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/imunologia , Vacinas Atenuadas/biossíntese , Animais , Anticorpos Neutralizantes , Linhagem Celular , Cricetinae , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina do Leste/veterinária , Encefalomielite Equina do Leste/virologia , Feminino , Engenharia Genética/métodos , Cavalos , Camundongos , Mutação , América do Norte , Projetos de Pesquisa , Vacinas Atenuadas/imunologia , Vacinas Virais/biossíntese , Virulência , Fatores de Virulência
7.
Virol J ; 16(1): 2, 2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611287

RESUMO

BACKGROUND: Eastern equine encephalitis virus is an alphavirus that naturally cycles between mosquitoes and birds or rodents in Eastern States of the US. Equine infection occurs by being bitten by cross-feeding mosquitoes, with a case fatality rate of up to 75% in humans during epizootic outbreaks. There are no licensed medical countermeasures, and with an anticipated increase in mortality when exposed by the aerosol route based on anecdotal human data and experimental animal data, it is important to understand the pathogenesis of this disease in pursuit of treatment options. This report details the clinical and pathological findings of mice infected with EEEV by the aerosol route, and use as a model for EEEV infection in humans. METHODS: Mice were exposed by the aerosol route to a dose range of EEEV to establish the median lethal dose. A pathogenesis study followed whereby mice were exposed to a defined dose of virus and sacrificed at time-points thereafter for histopathological analysis and virology. RESULTS: Clinical signs of disease appeared within 2 days post challenge, culminating in severe clinical signs within 24 h, neuro-invasion and dose dependent lethality. EEEV was first detected in the lung 1 day post challenge, and by day 3 peak viral titres were observed in the brain, spleen and blood, corresponding with severe meningoencephalitis, indicative of encephalitic disease. Lethality follows severe neurological signs, and may be linked to a threshold level of virus replication in the brain. Effective medical countermeasures for EEEV may necessitate early inoculation to inhibit infection of the brain in zoonotic incidents, and be able to traverse the blood-brain barrier to sufficiently interrupt replication in the brain in cases of aerosol infection. CONCLUSIONS: There is little human data on the hazard posed by aerosol infection with encephalitic alphaviruses, and use of EEEV as a bioweapon may be by the aerosol route. A well characterized model of aerosol exposure that recapitulates some of the most severe human clinical features is necessary to evaluate the efficacy of putative medical countermeasures, and to increase our understanding about how this route of infection induces such rapid neuro-invasion and resulting disease.


Assuntos
Suscetibilidade a Doenças/virologia , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalite Viral/patologia , Aerossóis , Animais , Encéfalo/virologia , Modelos Animais de Doenças , Encefalite Viral/mortalidade , Feminino , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Replicação Viral
8.
Virol J ; 14(1): 25, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28173871

RESUMO

BACKGROUND: Licensed antiviral therapeutics and vaccines to protect against eastern equine encephalitis virus (EEEV) in humans currently do not exist. Animal models that faithfully recapitulate the clinical characteristics of human EEEV encephalitic disease, including fever, drowsiness, anorexia, and neurological signs such as seizures, are needed to satisfy requirements of the Food and Drug Administration (FDA) for clinical product licensing under the Animal Rule. METHODS: In an effort to meet this requirement, we estimated the median lethal dose and described the pathogenesis of aerosolized EEEV in the common marmoset (Callithrix jacchus). Five marmosets were exposed to aerosolized EEEV FL93-939 in doses ranging from 2.4 × 101 PFU to 7.95 × 105 PFU. RESULTS: The median lethal dose was estimated to be 2.05 × 102 PFU. Lethality was observed as early as day 4 post-exposure in the highest-dosed marmoset but animals at lower inhaled doses had a protracted disease course where humane study endpoint was not met until as late as day 19 post-exposure. Clinical signs were observed as early as 3 to 4 days post-exposure, including fever, ruffled fur, decreased grooming, and leukocytosis. Clinical signs increased in severity as disease progressed to include decreased body weight, subdued behavior, tremors, and lack of balance. Fever was observed as early as day 2-3 post-exposure in the highest dose groups and hypothermia was observed in several cases as animals became moribund. Infectious virus was found in several key tissues, including brain, liver, kidney, and several lymph nodes. Clinical hematology results included early neutrophilia, lymphopenia, and thrombocytopenia. Key pathological changes included meningoencephalitis and retinitis. Immunohistochemical staining for viral antigen was positive in the brain, retina, and lymph nodes. More intense and widespread IHC labeling occurred with increased aerosol dose. CONCLUSION: We have estimated the medial lethal dose of aerosolized EEEV and described the pathology of clinical disease in the marmoset model. The results demonstrate that the marmoset is an animal model suitable for emulation of human EEEV disease in the development of medical countermeasures.


Assuntos
Aerossóis , Callithrix/virologia , Modelos Animais de Doenças , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina do Leste/veterinária , Encefalomielite Equina do Leste/virologia , Animais , Análise Química do Sangue , Encéfalo/patologia , Encéfalo/virologia , Encefalomielite Equina do Leste/patologia , Encefalomielite Equina do Leste/fisiopatologia , Feminino , Imunidade , Imuno-Histoquímica , Rim/virologia , Dose Letal Mediana , Fígado/virologia , Linfonodos/virologia , Masculino , RNA Viral/análise , RNA Viral/isolamento & purificação , Análise de Sobrevida , Carga Viral , Ensaio de Placa Viral
9.
Virol J ; 12: 152, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26420265

RESUMO

BACKGROUND: Eastern equine encephalitis virus (EEEV), an arbovirus, is an important human and veterinary pathogen belonging to one of seven antigenic complexes in the genus Alphavirus, family Togaviridae. EEEV is considered the most deadly of the mosquito-borne alphaviruses due to the high case fatality rate associated with clinical infections, reaching up to 75 % in humans and 90 % in horses. In patients that survive acute infection, neurologic sequelae are often devastating. Although natural infections are acquired by mosquito bite, EEEV is also highly infectious by aerosol. This fact, along with the relative ease of production and stability of this virus, has led it to being identified as a potential agent of bioterrorism. METHODS: To characterize the clinical course and outcome of EEEV strain FL93-939 infection, we compared clinical parameters, cytokine expression, viremia, and viral titers in numerous tissues of mice exposed by various routes. Twelve-week-old female BALB/c mice were infected by the intranasal, aerosol, or subcutaneous route. Mice were monitored for clinical signs of disease and euthanized at specified time points (6 hpi through 8 dpi). Blood and tissues were harvested for cytokine analysis and/or viral titer determination. RESULTS: Although all groups of animals exhibited similar clinical signs after inoculation, the onset and severity differed. The majority of those animals exposed by the aerosol route developed severe clinical signs by 4 dpi. Significant differences were also observed in the viral titers of target tissues, with virus being detected in the brain at 6 hpi in the aerosol study. CONCLUSION: The clinical course and outcome of EEEV infection in mice is dependent on route of exposure. Aerosol exposure to EEEV results in acute onset of clinical signs, rapid neuroinvasion, and 100 % mortality.


Assuntos
Infecções por Alphavirus/patologia , Modelos Animais de Doenças , Vírus da Encefalite Equina do Leste/crescimento & desenvolvimento , Vírus da Encefalite Equina do Leste/patogenicidade , Administração por Inalação , Administração Intranasal , Infecções por Alphavirus/virologia , Estruturas Animais/patologia , Estruturas Animais/virologia , Animais , Líquidos Corporais/virologia , Citocinas/análise , Feminino , Injeções Subcutâneas , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Carga Viral
10.
Artigo em Russo | MEDLINE | ID: mdl-26829861

RESUMO

Epidemiologic analysis of epidemic outbreaks caused by American equine encephalitis causative agents is carried out in the review. Eastern equine encephalomyelitis (EEE), Western equine encephalomyelitis (WEE) and Venezuela equine encephalomyelitis (VEE) viruses are etiologic agents of dangerous transmissive diseases that are usually accompanied by fever and neurologic symptoms. Among the New World alphaviruses, VEE virus has the most potential danger for humans and domestic animals. Currently, enzootic strains of VEE play an increasing role as etiologic agents of human diseases. Most of the VEE cases in humans in endemic regions during inter-epidemic period are caused by infection with VEE subtype ID virus. A possibility of emergence of novel epidemic outbreaks of VEE is determined by mutations of ID subtype strains into IC subtype, and those currently pose a potential threat as an etiologic agent of the disease. Despite low morbidity, EEE and WEE are a problem for healthcare due to a relatively high frequency of lethal outcomes of the disease.


Assuntos
Vírus da Encefalite Equina do Oeste/patogenicidade , Encefalomielite Equina/epidemiologia , Encefalomielite Equina/virologia , Animais , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/patogenicidade , Vírus da Encefalite Equina Venezuelana/genética , Vírus da Encefalite Equina Venezuelana/patogenicidade , Vírus da Encefalite Equina do Oeste/genética , Encefalomielite Equina/transmissão , Encefalomielite Equina/veterinária , Cavalos/virologia , Humanos , Estados Unidos
11.
Vet Clin North Am Equine Pract ; 30(3): 523-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25441112

RESUMO

Mosquito-borne diseases affect horses worldwide. Mosquito-borne diseases generally cause encephalomyelitis in the horse and can be difficult to diagnose antemortem. In addition to general disease, and diagnostic and treatment aspects, this review article summarizes the latest information on these diseases, covering approximately the past 5 years, with a focus on new equine disease encroachments, diagnostic and vaccination aspects, and possible therapeutics on the horizon.


Assuntos
Vírus da Encefalite Equina do Leste/patogenicidade , Vírus da Encefalite Equina Venezuelana/patogenicidade , Encefalomielite Equina/veterinária , Doenças dos Cavalos/virologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/patogenicidade , Animais , Encefalomielite Equina/virologia , Cavalos , Febre do Nilo Ocidental/virologia
12.
Arch Virol ; 159(10): 2615-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24862186

RESUMO

Eastern equine encephalitis is a viral zoonosis that exhibits complex distribution and epidemiology, and greater importance should be given to this disease by the public-health authorities. In Brazil, although eastern equine encephalitis virus (EEEV) has been identified in vectors and antibodies are sometimes detected in horses and humans, there have been no records of equine encephalitis in horses caused by this virus during the last 24 years. This study describes eighteen cases of eastern equine encephalomyelitis that occurred in six Brazilian states between 2005 and 2009. Viral RNA was identified using semi-nested RT-PCR to detect members of the genus Alphavirus, and by genetic sequencing. The gene encoding NSP1 was partially amplified, and after genetic sequencing, eighteen sequences were generated. All eighteen strains were classified as belonging to lineage III of American EEEV. These findings could be an indication of the importance of this virus in animal and human public health.


Assuntos
Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina do Leste/epidemiologia , Doenças dos Cavalos/epidemiologia , Animais , Sequência de Bases , Tronco Encefálico/virologia , Brasil/epidemiologia , Cerebelo/virologia , Vírus da Encefalite Equina do Leste/classificação , Vírus da Encefalite Equina do Leste/genética , Encefalomielite Equina do Leste/veterinária , Encefalomielite Equina do Leste/virologia , Doenças dos Cavalos/virologia , Cavalos/virologia , Camundongos , RNA Viral/isolamento & purificação , Análise de Sequência de DNA
13.
Nature ; 506(7487): 245-8, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24352241

RESUMO

Currently, there is little evidence for a notable role of the vertebrate microRNA (miRNA) system in the pathogenesis of RNA viruses. This is primarily attributed to the ease with which these viruses mutate to disrupt recognition and growth suppression by host miRNAs. Here we report that the haematopoietic-cell-specific miRNA miR-142-3p potently restricts the replication of the mosquito-borne North American eastern equine encephalitis virus in myeloid-lineage cells by binding to sites in the 3' non-translated region of its RNA genome. However, by limiting myeloid cell tropism and consequent innate immunity induction, this restriction directly promotes neurologic disease manifestations characteristic of eastern equine encephalitis virus infection in humans. Furthermore, the region containing the miR-142-3p binding sites is essential for efficient virus infection of mosquito vectors. We propose that RNA viruses can adapt to use antiviral properties of vertebrate miRNAs to limit replication in particular cell types and that this restriction can lead to exacerbation of disease severity.


Assuntos
Vírus da Encefalite Equina do Leste/imunologia , Vírus da Encefalite Equina do Leste/patogenicidade , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata/imunologia , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/patologia , Infecções por Alphavirus/virologia , Animais , Sítios de Ligação/genética , Linhagem Celular , Cricetinae , Culicidae/virologia , Modelos Animais de Doenças , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/crescimento & desenvolvimento , Feminino , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/genética , Imunidade Inata/genética , Insetos Vetores/virologia , Masculino , Camundongos , MicroRNAs/metabolismo , Células Mieloides/imunologia , Células Mieloides/virologia , Especificidade de Órgãos , Replicação Viral/genética , Replicação Viral/imunologia
14.
J Virol ; 87(15): 8582-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23720725

RESUMO

Recently, we compared amino acid sequences of the E2 glycoprotein of natural North American eastern equine encephalitis virus (NA-EEEV) isolates and demonstrated that naturally circulating viruses interact with heparan sulfate (HS) and that this interaction contributes to the extreme neurovirulence of EEEV (C. L. Gardner, G. D. Ebel, K. D. Ryman, and W. B. Klimstra, Proc. Natl. Acad. Sci. U. S. A., 108:16026-16031, 2011). In the current study, we have examined the contribution to HS binding of each of three lysine residues in the E2 71-to-77 region that comprise the primary HS binding site of wild-type (WT) NA-EEEV viruses. We also report that the original sequence comparison identified five virus isolates, each with one of three amino acid differences in the E2 71-to-77 region, including mutations in residues critical for HS binding by the WT virus. The natural variant viruses, which possessed either a mutation from lysine to glutamine at E2 71, a mutation from lysine to threonine at E2 71, or a mutation from threonine to lysine at E2 72, exhibited altered interactions with heparan sulfate and cell surfaces and altered virulence in a mouse model of EEEV disease. An electrostatic map of the EEEV E1/E2 heterotrimer based upon the recent Chikungunya virus crystal structure (J. E. Voss, M. C. Vaney, S. Duquerroy, C. Vonrhein, C. Girard-Blanc, E. Crublet, A. Thompson, G. Bricogne, and F. A. Rey, Nature, 468:709-712, 2010) showed the HS binding site to be at the apical surface of E2, with variants affecting the electrochemical nature of the binding site. Together, these results suggest that natural variation in the EEEV HS binding domain may arise during EEEV sylvatic cycles and that this variation may influence receptor interaction and the severity of EEEV disease.


Assuntos
Vírus da Encefalite Equina do Leste/fisiologia , Heparitina Sulfato/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Substituição de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Análise Mutacional de DNA , Modelos Animais de Doenças , Vírus da Encefalite Equina do Leste/química , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina/patologia , Encefalomielite Equina/virologia , Lisina/genética , Lisina/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Ligação Proteica , Eletricidade Estática , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
15.
Am J Trop Med Hyg ; 86(3): 540-4, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22403333

RESUMO

Eastern equine encephalitis virus (EEEV) is among the most medically important arboviruses in North America, and studies suggest a role for amphibians and reptiles in its transmission cycle. Serum samples collected from 351 amphibians and reptiles (27 species) from Alabama, USA, were tested for the presence of antibodies against EEEV. Frogs, turtles, and lizards showed little or no seropositivity, and snakes had high seropositivity rates. Most seropositive species were preferred or abundant hosts of Culex spp. mosquitoes at Tuskegee National Forest, that target ectothermic hosts. The cottonmouth, the most abundant ectotherm sampled, displayed a high prevalence of seropositivity, indicating its possible role as an amplification and/or over-wintering reservoir for EEEV.


Assuntos
Anfíbios/virologia , Vírus da Encefalite Equina do Leste/isolamento & purificação , Encefalomielite Equina do Leste/epidemiologia , Encefalomielite Equina do Leste/veterinária , Répteis/virologia , Alabama/epidemiologia , Animais , Culex/virologia , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina do Leste/transmissão , Encefalomielite Equina do Leste/virologia , Interações Hospedeiro-Patógeno , Insetos Vetores/virologia , Estações do Ano
16.
Vaccine ; 30(7): 1276-82, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22222869

RESUMO

To develop an effective vaccine against eastern equine encephalitis (EEE), we engineered a recombinant EEE virus (EEEV) that was attenuated and capable of replicating only in vertebrate cells, an important safety feature for live vaccines against mosquito-borne viruses. The subgenomic promoter was inactivated with 13 synonymous mutations and expression of the EEEV structural proteins was placed under the control of an internal ribosomal entry site (IRES) derived from encephalomyocarditis virus (EMCV). We tested this vaccine candidate for virulence, viremia and efficacy in the murine model. A single subcutaneous immunization with 10(4) infectious units protected 100% of mice against intraperitoneal challenge with a highly virulent North American EEEV strain. None of the mice developed any signs of disease or viremia after immunization or following challenge. Our findings suggest that the IRES-based attenuation approach can be used to develop a safe and effective vaccine against EEE and other alphaviral diseases.


Assuntos
Vírus da Encefalite Equina do Leste/imunologia , Encefalomielite Equina do Leste/prevenção & controle , RNA Viral/genética , Vacinação , Vacinas Virais , Viremia/prevenção & controle , Animais , Anticorpos Antivirais/imunologia , Sequência de Bases , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina do Leste/imunologia , Vírus da Encefalomiocardite/genética , Regulação Viral da Expressão Gênica/imunologia , Engenharia Genética/métodos , Injeções Subcutâneas , Masculino , Camundongos , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , RNA Viral/imunologia , Ribossomos/genética , Vacinas Atenuadas , Vacinas Virais/administração & dosagem , Viremia/imunologia , Virulência
17.
Proc Natl Acad Sci U S A ; 108(38): 16026-31, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21896745

RESUMO

The Alphavirus genus of the family Togaviridae contains mosquito-vectored viruses that primarily cause either arthritogenic disease or acute encephalitis. North American eastern equine encephalitis virus (NA-EEEV) is uniquely neurovirulent among encephalitic alphaviruses, causing mortality in a majority of symptomatic cases and neurological sequelae in many survivors. Unlike many alphaviruses, NA-EEEV infection of mice yields limited signs of febrile illness typically associated with lymphoid tissue replication. Rather, signs of brain infection, including seizures, are prominent. Use of heparan sulfate (HS) as an attachment receptor increases the neurovirulence of cell culture-adapted strains of Sindbis virus, an arthritogenic alphavirus. However, this receptor is not known to be used by naturally circulating alphaviruses. We demonstrate that wild-type NA-EEEV strain FL91-4679 uses HS as an attachment receptor and that the amino acid sequence of its E2 attachment protein is identical to those of natural isolates sequenced by RT-PCR amplification of field samples. This finding unequivocally confirms the use of HS receptors by naturally circulating NA-EEEV strains. Inactivation of the major HS binding domain in NA-EEEV E2 demonstrated that the HS binding increased brain replication and neurologic disease but reduced lymphoid tissue replication, febrile illness signs, and cytokine/chemokine induction in mice. We propose that HS binding by natural NA-EEEV strains alters tropism in vivo to antagonize/evade immune responses, and the extreme neurovirulence of wild-type NA-EEEV may be a consequence. Therefore, reinvestigation of HS binding by this and other arboviruses is warranted.


Assuntos
Encéfalo/virologia , Vírus da Encefalite Equina do Leste/metabolismo , Encefalomielite Equina/virologia , Heparitina Sulfato/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Encéfalo/patologia , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina/sangue , Encefalomielite Equina/patologia , Cavalos , Interferon-alfa/sangue , Interferon beta/sangue , Tecido Linfoide/patologia , Tecido Linfoide/virologia , Camundongos , Dados de Sequência Molecular , Mutação , América do Norte , Análise de Sobrevida , Fatores de Tempo , Virulência/genética , Replicação Viral/genética
18.
Vector Borne Zoonotic Dis ; 11(4): 413-21, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21395423

RESUMO

Host blood meals in seven mosquito species previously shown to be infected with eastern equine encephalitis virus at a site in the Tuskegee National Forest in southcentral Alabama were investigated. Of 1374 blood meals derived from 88 different host species collected over 6 years from these seven mosquito species, 1099 were derived from Culex erraticus. Analysis of the temporal pattern of Cx. erraticus meals using a Runs test revealed that the patterns of feeding upon avian and mammalian hosts from March to September of each year were not randomly distributed over time. Similarly, meals taken from the three most commonly targeted host species (yellow-crowned night heron, great blue heron, and white-tailed deer) were not randomly distributed. A Tukey's two-way analysis of variance test demonstrated that although the temporal pattern of meals taken from avian hosts were consistent over the years, the patterns of meals taken from the individual host species were not consistent from year to year.


Assuntos
Culex/fisiologia , Comportamento Alimentar , Interações Hospedeiro-Parasita , Insetos Vetores/fisiologia , Alabama , Análise de Variância , Animais , Aves/virologia , Cervos/virologia , Reservatórios de Doenças/parasitologia , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina/transmissão
19.
J Virol ; 84(2): 1014-25, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19889755

RESUMO

The eastern equine encephalitis (EEE) complex consists of four distinct genetic lineages: one that circulates in North America (NA EEEV) and the Caribbean and three that circulate in Central and South America (SA EEEV). Differences in their geographic, pathogenic, and epidemiologic profiles prompted evaluation of their genetic diversity and evolutionary histories. The structural polyprotein open reading frames of all available SA EEEV and recent NA EEEV isolates were sequenced and used in evolutionary and phylogenetic analyses. The nucleotide substitution rate per year for SA EEEV (1.2 x 10(-4)) was lower and more consistent than that for NA EEEV (2.7 x 10(-4)), which exhibited considerable rate variation among constituent clades. Estimates of time since divergence varied widely depending upon the sequences used, with NA and SA EEEV diverging ca. 922 to 4,856 years ago and the two main SA EEEV lineages diverging ca. 577 to 2,927 years ago. The single, monophyletic NA EEEV lineage exhibited mainly temporally associated relationships and was highly conserved throughout its geographic range. In contrast, SA EEEV comprised three divergent lineages, two consisting of highly conserved geographic groupings that completely lacked temporal associations. A phylogenetic comparison of SA EEEV and Venezuelan equine encephalitis viruses (VEEV) demonstrated similar genetic and evolutionary patterns, consistent with the well-documented use of mammalian reservoir hosts by VEEV. Our results emphasize the evolutionary and genetic divergences between members of the NA and SA EEEV lineages, consistent with major differences in pathogenicity and ecology, and propose that NA and SA EEEV be reclassified as distinct species in the EEE complex.


Assuntos
Encefalomielite Equina do Leste , Evolução Molecular , Variação Genética , Animais , Teorema de Bayes , Cricetinae , Vírus da Encefalite Equina do Leste/classificação , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/patogenicidade , Vírus da Encefalite Equina do Leste/fisiologia , Encefalomielite Equina do Leste/epidemiologia , Encefalomielite Equina do Leste/virologia , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/virologia , Cavalos/virologia , Humanos , América do Norte/epidemiologia , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , América do Sul/epidemiologia , Especificidade da Espécie , Proteínas Estruturais Virais/genética
20.
Virol J ; 6: 170, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19852817

RESUMO

Mice and guinea pigs were experimentally exposed to aerosols containing regionally-distinct strains (NJ1959 or ArgM) of eastern equine encephalitis virus (EEEV) at two exclusive particle size distributions. Mice were more susceptible to either strain of aerosolized EEEV than were guinea pigs; however, clinical signs indicating encephalitis were more readily observed in the guinea pigs. Lower lethality was observed in both species when EEEV was presented at the larger aerosol distribution (> 6 mum), although the differences in the median lethal dose (LD50) were not significant. Virus isolation and immunohistochemistry indicated that virus invaded the brains of guinea pigs within one day postexposure, regardless of viral strain or particle size distribution. Immunohistochemistry further demonstrated that neuroinvasion occurred through the olfactory system, followed by transneuronal spread to all regions of the brain. Olfactory bipolar neurons and neurons throughout the brain were the key viral targets. The main microscopic lesions in infected guinea pigs were neuronal necrosis, inflammation of the meninges and neuropil of the brain, and vasculitis in the brain. These results indicate that guinea pigs experimentally infected by aerosolized EEEV recapitulate several key features of fatal human infection and thus should serve as a suitable animal model for aerosol exposure to EEEV.


Assuntos
Aerossóis , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina/patologia , Encefalomielite Equina/virologia , Animais , Encéfalo/patologia , Encéfalo/virologia , Modelos Animais de Doenças , Encefalomielite Equina/fisiopatologia , Feminino , Cobaias , Humanos , Imuno-Histoquímica , Dose Letal Mediana , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Condutos Olfatórios/patologia , Condutos Olfatórios/virologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...